Oral Microbiome and Nitric Oxide: The Missing Link in the Management of Blood Pressure

Posted by Julian Center | Filed under , , , , , ,

Nathan S. Bryan, Gena Tribble, Nikola Angelov Baylor College of Medicine, The University of Texas Health Science Center at Houston

 

Abstract:

Having high blood pressure puts you at risk for heart disease and stroke, which are leading causes of death in the United States and worldwide. One out of every 3 Americans has hypertension and it is estimated that despite aggressive treatment with medications, only about half of those medicated have managed blood pressure. Recent discoveries of the oral microbiome that reduce inorganic nitrate to nitrite and nitric oxide provide a new therapeutic target for the management of hypertension. The presence or absence of select and specific bacteria may determine steady state blood pressure levels. Eradication of oral bacteria through anti-septic mouthwash or over use of antibiotics causes blood pressure to increase. Allowing recolonization of nitrate and nitrite reducing bacteria can normalize blood pressure. This review will provide evidence of the link between oral microbiota and the production of nitric oxide and regulation of systemic blood pressure. Management of systemic hypertension through maintenance of the oral microbiome is a completely new paradigm in cardiovascular medicine.

 

Hypertension

Human blood pressure regulation is complex, and despite decades of research into the variables affecting resting blood pressure, there is still a significant knowledge gap. Hypertension is highly prevalent in the adult population in the United States, especially among persons older than 60 years of age, and affects approximately 1 billion adults worldwide [1, 2]. In the United States, about 77.9 million (1 out of every 3) adults have high blood pressure. Among persons 50 years of age or older, isolated systolic hypertension is the most common form of hypertension [4, 5] and systolic blood pressure becomes more important than diastolic blood pressure as an independent risk predictor for most all cardiovascular related disease including end stage renal disease (ESRD) [6-9]. In some age groups, the risk of cardiovascular disease doubles for each increment of 20/10 mmHg of blood pressure, starting as low as 115/75 mmHg. In addition to coronary heart diseases and stroke, complications of raised blood pressure include heart failure, peripheral vascular disease, renal impairment, retinal hemorrhage and visual impairment.

Worldwide, raised blood pressure is estimated to cause 7.5 million deaths, about 12.8% of the total of all deaths. This accounts for 57 million disability adjusted life years (DALYS) or 3.7% of total DALYS. Globally, the overall prevalence of raised blood pressure in adults aged 25 and over was around 40% in 2008. The proportion of the world’s population with high blood pressure, or uncontrolled hypertension, fell modestly between 1980 and 2008. However, because of population growth and ageing, the number of people with uncontrolled hypertension rose from 600 million in 1980 to nearly 1 billion in 2008 [10]. 

Despite major advances in understanding the pathophysiology of hypertension and availability of antihypertensive drugs, suboptimal blood pressure control is still the most important risk factor for cardiovascular mortality. According to the AHA 2013 Statistics Fact Sheet, although 75% of people that know they have hypertension and are under current treatment, only about 52% of those have it controlled. The Systolic Blood Pressure Intervention Trial (SPRINT) showed that among adults with hypertension but without diabetes, lowering systolic blood pressure to a target goal of less than 120 mm Hg, as compared with the standard goal of less than 140 mm Hg, resulted in significantly lower rates of fatal and nonfatal cardiovascular events and death from any cause.[11]. Because blood pressure remains elevated in ≈50% of all treated hypertensive patients [12, 13], and more effective blood pressure management can save lives, novel, efficacious and cost-effective therapeutic strategies are urgently required for the treatment of hypertension.

 

Nitric Oxide

The discovery of endothelium derived relaxing factor (EDRF) in 1980 [14]** that was later identified as nitric oxide (NO) [15, 16]* revolutionized vascular biology and identified new strategies for controlling blood pressure. NO is produced endogenously from the five-electron oxidation of the guanidino nitrogen of L-arginine by the enzyme isoform eNOS (endothelial nitric oxide synthase) [17]. NO produced or generated in the vasculature then diffuses into the underlying smooth muscle causing these muscles to relax. This results in vasodilation, causing a reduction in systemic blood pressure and an increase in blood flow and oxygen delivery to specific vascular beds. In healthy subjects, activation of eNOS causes vasodilation in both muscular conduit vessels and resistance arterioles. In contrast, in subjects with atherosclerosis or endothelial dysfunction, similar stimulation yields attenuated vasodilation in peripheral vessels and causes paradoxical vasoconstriction in coronary arteries, thus indicating a decrease in the production and/or bioavailability of NO [18, 19]. Emerging evidence shows that endothelial dysfunction and subsequent NO-deficiency are critically associated with the development of hypertension and other forms of cardiovascular disease [20]. Hypertension accelerates atherosclerosis. Interestingly, endothelial dysfunction can be demonstrated in patients with risk factors for atherosclerosis in the absence of atherosclerosisitself [21, 22]. Experimental and clinical studies provide evidence that detective endothelial NO function is not only associated with all major cardiovascular risk factors, such as hyperlipidemia, diabetes, hypertension, smoking and the severity of established atherosclerosis, but also has a profound predictive value for future atherosclerotic disease progression [23]. These results indicate that essential hypertension is characterized by an age-related reduction of nitric oxide production and bioavailability.  

Human Oral Microbiome – Bacterial Nitrate Reduction

The human microbiome is composed of many different bacterial species, which outnumber our human cells ten to one and provide functions that are essential for our survival. The microbiota of the lower intestinal tract is widely recognized as playing a symbiotic role in maintaining a healthy host physiology [24] by participating in nutrient acquisition and bile acid recycling, among other activities. In contrast, although the role of oral microbiota in disease is well studied, specific contributions to host health are not well defined. A human nitrogen cycle has been identified. This pathway, termed the entero-salivary nitrate-nitrite-nitric oxide pathway, can positively affect nitric oxide homeostasis, and represents a potential symbiotic relationship between oral bacteria and their human hosts [25, 26]. It is now recognized that the oral commensal bacteria provide an important metabolic function in human physiology by contributing a nitric oxide synthase (NOS)-independent source of NO. This process is analogous to the environmental nitrogen cycle whereby soil bacteria convert atmospheric nitrogen oxides to usable forms for plant growth. Human nitrate reduction requires the presence of nitrate-reducing bacteria as mammalian cells cannot effectively reduce this anion.

Inorganic nitrite (NO2 - ) and nitrate (NO3 - ) are known as food additives cured meats and naturally occurring in green leafy vegetables [27, 28] but also as inert oxidative end-products of endogenous NO metabolism [29]. However, from research performed over the past decade, it is now apparent that nitrate and nitrite are physiologically recycled in blood and tissue to form NO and other bioactive nitrogen oxides [30-33] and now considered essential nutrients [34*, 35*]. As a result, they should now be viewed as storage pools for NO-like bioactivity to be acted upon when enzymatic NO production from NOS is insufficient, such as during anaerobic conditions or uncoupling of NOS. The bio-activation of nitrate from dietary (mainly green leafy vegetables) or endogenous sources (oxidation of NO) requires its initial reduction to nitrite, and because mammals lack specific and effective nitrate reductase enzymes, this conversion is mainly carried out by commensal bacteria [36]**. Dietary nitrate is rapidly absorbed in the upper gastrointestinal tract. In the blood, it mixes with the nitrate formed from the oxidation of endogenous NO produced from the NOS enzymes. After a meal rich in nitrate, the nitrate levels in plasma increase greatly and remain high for a prolonged period of time (the plasma half-life of nitrate is 5–6 hours). The nitrite levels in plasma also increase after nitrate ingestion after approximately 90 minutes [37] provide it can be reduce by oral nitrate reducing bacteria.

 

Although much of the nitrate is eventually excreted in the urine, up to 25% is actively taken up by the salivary glands and is concentrated up to 20-fold in saliva [37, 38]. In the mouth, commensal facultative anaerobic bacteria reduce salivary nitrate to nitrite during anaerobic respiration by the action of nitrate reductases [26, 36]. After a dietary nitrate load, the salivary nitrate and nitrite levels can approach 10 mM and 1–2 mM, respectively [37]. When saliva enters the acidic stomach (1–1.5 L per day), much of the nitrite is rapidly protonated to form nitrous acid (HNO2; pKa 3.3), which decomposes further to form NO and other nitrogen oxides [32, 33]. A simplified human nitrogen cycle is illustrated in Figure 1. More recent studies indicate that nitrite does not have to be protonated to be absorbed and is about 98% bioavailable when swallowed in an aqueous solution [39]. 

Salivary nitrate is metabolized to nitrite via a two-electron reduction, a reaction that mammalian cells are unable to perform, during anaerobic respiration by nitrate reductases produced by facultative and obligate anaerobic commensal oral bacteria [40, 41]. As illustrated in Figure 2, identification of specific partial denitrifying bacteria in the oral cavity can provide optimal conditions for nitrate reduction with nitrite accumulation in the saliva. Although a few nitrate-reducing bacteria have been identified in the oral cavity [42], we have analyzed nitrate reduction by bacterial communities present in tongue-scrapings from healthy human volunteers during four days of in vitro growth and performed a parallel metagenomic analysis of these samples to identify specific bacteria associated with nitrate reduction. Through 16S rRNA gene pyrosequencing and whole genome shotgun (WGS) sequencing and analysis, we identified specific taxa that likely contribute to nitrate reduction. Biochemical characterization of nitrate and nitrite reduction by four candidate species indicates that complex community interactions contribute to nitrate reduction [43]. The bacterial communities had varying potential for nitrate reduction, and our study identified 14 candidate species that were present in communities with the best nitrate reduction activity. The fourteen species present at an abundance of at least 0.1% in the best nitrate-reducing sample and at the highest abundance in this sample compared to the intermediate and worst reducing sample that belonged to the genera of interest and were identified through 16S rRNA gene pyrosequencing and analysis were: Granulicatella adiacens, Haemophilus parainfluenzae, Actinomyces odontolyticus, Actinomyces viscosus, Actinomyces oris, Neisseria flavescens, Neisseria mucosa, Neisseria sicca, Neisseria subflava, Prevotella melaninogenica, Prevotella salivae, Veillonella dispar, Veillonella parvula, and Veillonella atypica. Additionally, Fusobacterium nucleatum and Brevibacillus brevis were designated as species of interest even though they were not at a relative abundance of at least 0.1% in the WGS best nitratereducing sample [43].

 

Previously the Doel et al., 2005, study isolated and identified five genera of oral nitrate reducing bacterial taxa on the tongues of healthy individuals: Veillonella, Actinomyces, Rothia, Staphylococcus, and Propionibacterium [42]. In our investigation, Veillonella species were the most abundant group of nitrate reducers isolated from the tongue, followed by Actinomyces spp. Veillonella was the  most abundant nitrate-reducing genus detected in the original tongue scrapings, although Prevotella, Neisseria, and Haemophilus were all found at a higher abundance than Actinomyces, highlighting the higher resolution of our study. This difference in resolution is likely due to our use of a sequencing-based approach, which allowed us to survey the native bacterial environment on the dorsal surface of the tongue without depending on the growth requirement necessary for classic culture-based techniques. Metagenomic data are important and informative in that one can determine what a bacterial community is capable of doing, yet it is limited in the sense that it cannot inform what the community is actually doing, which can vary under different circumstances. Thus, while each community had the same capacity for nitrate reduction, the true activity clearly differed between these communities. Furthermore, as not all healthy donors had nitrate-reducing bacteria in their oral cavity, there may be a significant number of individuals who may not have a functioning nitrate-nitrite-NO enterosalivary pathway to support systemic health. The presence or absence of these select bacteria may be a new determinant of nitrite and NO bioavailability in humans and, thus, a new consideration for cardiovascular disease risk. Further studies on multi-species biofilms integrating biochemical, metagenomic and metatranscriptomic data will answer these important questions and provide more information regarding the community dynamics that contribute to oral nitrate reduction that results in nitrite accumulation.

 

Nitrite Based Signaling

The production of nitrite from nitrate-reducing bacteria may have profound implications on the health of the human host. Numerous studies have shown that nitrite produced from bacterial nitrate reduction is an important storage pool for NO in blood and tissues when NOSmediated NO production is insufficient [44-48]. Nitrite is also an oxidative breakdown product of NO that has been shown to serve as an acute marker of NO flux/formation [49]. Nitrite is now recognized as a cell signaling molecule that can act as a storage from of NO as well as a NO independent signal [30*, 50]. Nitrite is in steady-state equilibrium with S-nitrosothiols [30, 51], and has been shown to activate soluble guanylyl cyclase (sGC) and increase cGMP levels in tissues [30] and lead to vasodilation [52, 53]. Therefore, it is an ideal candidate for restoring both cGMP-dependent and cGMP-independent NO signaling. In addition to the oxidation of NO, nitrite is also derived from reduction of salivary nitrate by commensal bacteria in the mouth and gastrointestinal tract [54, 55], as well as from dietary sources, such as meat, vegetables, and drinking water.

Since nitrate reduction by microbial communities generates nitrite, it is of great importance to be able to recognize specific bacteria in and on the body that are capable of generating nitrite from nitrate. Once nitrite is formed, it can be utilized as a substrate for NO production. Although largely inefficient, there exists a number of nitrite- reducing system in mammals. Nitrite reductase activity in mammalian tissues has been linked to the mitochondrial electron transport system [56, 57], protonation [58], deoxyhemoglobin [59], and xanthine oxidase [60, 61]. Nitrite can also transiently form S-nitrosothiols (RSNOs) under both normoxic and hypoxic conditions [62], and a recent study by Bryan et al demonstrates that steady state concentrations of tissue nitrite and S-nitroso species are affected by changes in dietary NOx (nitrite and nitrate) intake [30]. Furthermore, enriching dietary intake of nitrite and nitrate translates into significantly less injury from myocardial infarction [44]*. Previous studies demonstrated that nitrite therapy given intravenously prior to reperfusion protects against hepatic and myocardial ischemia/reperfusion (I/R) injury [63]. Additionally, experiments in primates revealed a beneficial effect of long-term application of nitrite on cerebral vasospasm [64]. Moreover, inhalation of nitrite selectively dilates the pulmonary circulation under hypoxic conditions in vivo in sheep [65]. Topical application of nitrite improves skin infections and ulcerations [66]. Furthermore, in the stomach, nitrite-derived NO seems to play an important role in host defense [36] and in regulation of gastric mucosal integrity [67]. All of these studies, along with the observation that nitrite can act as a marker of NOS activity [49], have opened new avenues for the diagnostic and therapeutic applications of nitrite, especially in cardiovascular diseases, using nitrite as a marker as well as an active agent. Oral nitrite has also been shown to reverse L-NAME (NOS inhibitor)-induced hypertension and serve as an alternate source of NO in vivo [68]. In fact, a report by Kleinbongard et al. [69] demonstrates that plasma nitrite levels progressively decrease with increasing cardiovascular risk. Since a substantial portion of steadystate nitrite concentrations in blood and tissue are derived from dietary sources [30], modulation of nitrate intake along with optimal nitrate reducing microbial communities may provide a first line of defense for conditions associated with NO insufficiency [50].

 

Eradication of Nitrate Reducing Bacteria Eliminates Health Benefits of Nitrate based Diets and Interventions

In various animal models and in humans, dietary nitrate supplementation has shown numerous beneficial effects, including a reduction in blood pressure, protection against ischemiareperfusion damage, restoration of NO homeostasis with associated cardioprotection, increased vascular regeneration after chronic ischemia, and a reversal of vascular dysfunction in the elderly [34, 35, 70, 71]. Some of these benefits were reduced or completely prevented when the oral microbiota were abolished with an antiseptic mouthwash [70, 72]. Plasma and salivary nitrite levels are abolished after a dietary nitrate load in healthy subjects taking an antiseptic mouthwash [73]. It has been reported that dietary nitrate reduces blood pressure in healthy volunteers [46, 74], and that the effects are abolished after rinsing with oral antiseptic mouthwash [75]**. Both strong and weak antibacterial agents suppress the rise in plasma nitrite observed following the consumption of a high nitrate diet and stronger antiseptics can influence the blood pressure response during low-intensity exercise [76]. Additionally, it was recently shown that in the absence of any dietary modifications, a seven-day period of antiseptic mouthwash treatment to disrupt the oral microbiota reduced both oral and plasma nitrite levels in healthy human volunteers, and was associated with a sustained increase in both systolic and diastolic blood pressure [75]. Oral nitrite exerts antihypertensive effects in the presence of antiseptic mouthwash that disrupts the enterosalivary circulation and reduction of nitrate [77]. Altogether, these studies firmly establish the role for oral nitrate-reducing bacteria in making a physiologically relevant contribution to host nitrite and thus NO levels, with measureable physiological effects. It appears that providing nitrite can overcome the absence of microbial nitrate reduction.  

 

Conclusion

Clearly, the potential for the entero-salivary nitrate-nitrite-NO pathway to serve as a NO bioavailability maintenance system by harnessing the nitrate reductase activity of specific commensal bacteria calls for studies that may be profound and truly transformative. These studies will have the potential to: 1) redefine the meaning of “healthy oral microbiome” to include microbes associated with NO production, 2) provide a new target for NO-based therapies and open a new direction in cardiovascular research and 3) allow development of new diagnostics targeted at specific oral microbial communities or select bacteria, the absence of which may reflect a state of NO insufficiency and change the treatment strategies for NO restoration in a number of different diseases. With the loss of NO signaling and homeostasis being one of the earliest events in the onset and progression of cardiovascular disease, targeting microbial communities early in the process may lead to better preventative interventions in cardiovascular medicine. This may also affect the way oral health professionals recommend oral hygienic practices. Manipulation of the human microbiome as a therapeutic target for disease management is on the near horizon. The oral cavity is an attractive target for probiotic and/or prebiotic therapy because of the ease of access. A full understanding of the entero-salivary nitrate-nitrite-NO pathway will require the generation and integration of a complete set of data from metagenomic, metatranscriptomic, metaproteomic and metametabolomic studies coupled to biochemical functional assays. The potential to restore the oral flora as a means to provide NO production is a completely new paradigm for NO biochemistry and physiology as well as for cardiovascular medicine and dentistry.  

There is a known correlation between oral health and systemic disease [78]. Importantly, because oral NO production is dependent on oral nitrate reducing bacteria, these observations suggest that the link between oral health issues such as chronic periodontitis and cardiovascular disease may be due in part to decreased abundance of nitrate reducers and concurrent increase of pathogenic bacterial species in the oral cavity. Disruption of nitrite and NO production in the oral cavity may contribute to the oral-systemic link between oral hygiene and cardiovascular risk and disease. The identification of new biomarkers for NO insufficiency and the exploitation of the oral microbiota to increase cardiovascular health will be enabled by further characterization of the enzymatic activities of native oral bacterial communities from larger healthy cohorts and specific patient populations. These cohorts should consist not only of specific U.S. population, but also of other around-the-world (European, Asian) populations. It is likely that the oral microbiomes of different ethnic groups, even those within different regions of the U.S., vary widely. It will be important to determine whether different nitrate-reducing communities are more prevalent in geographically dispersed healthy populations; likewise, it will also be important to determine whether different nitrate reducing communities are lacking in specific patient populations from around the world. If certain patient populations lack specific nitrate reducing bacteria, personalized treatments to enrich for nitrate reducers may be warranted. It may be time to discourage the use of antiseptic mouthwash. Additionally, while antibiotics are sometimes used to target specific bacterial species, it is possible that potential deleterious effects of antibiotic usage on nitrate-reducing communities may preclude the use of antibiotics in specific patient populations.

For the past 30 years, scientists have focused on NO production/regulation at the level of nitric oxide synthase (NOS), through the five-electron oxidation of L-arginine. However, this pathway becomes dysfunctional with age and disease [79]. The notion that this deficiency can be overcome by targeting oral bacteria is profound and revolutionary. Therapeutically, then, perhaps an effective strategy to promote NO production and overcome conditions of NO insufficiency may not be targeted at eNOS, but rather to target specific oral nitrate reducing bacterial communities and increasing the consumption of nitrite and nitrate enriched foods and vegetables. From a public health perspective, we may be able to make better recommendations on diet and relevant host-microbe communities to affect dramatically the incidence and severity of a number of symptoms and diseases characterized by NO insufficiency. Development of novel therapeutics or strategies to restore NO homeostasis can have a profound impact on disease prevention [80]. These new discoveries in the oral bacterial microbiome suggest that an effective strategy to promote therapeutically NO production and overcome conditions of NO insufficiency may not solely be to target NOS, but, rather, to focus on understanding specific oral bacterial communities and the optimal conditions for efficient oral nitrate reduction. It appears from early studies that many individuals may not have the optimal microbial communities for maximum nitrate reduction, causing a disruption in a critical NO production pathway. Understanding and harnessing this alternative pathway may prove to be a viable and costeffective strategy for maintaining NO homeostasis in humans. Because NO signaling affects all organ systems and almost all disease processes described to date, this novel approach to NO regulation has the potential to affect the study and treatment of many diseases across all organ systems.  

 

References: Papers of particular interest, published recently, have been highlighted as:

• Of importance

•• Of major importance

1.  Kearney, P.M., et al., Global burden of hypertension: analysis of worldwide data. Lancet, 2005.  365(9455): p. 217‐23. 

2.  Go, A.S., et al., Heart disease and stroke statistics‐‐2014 update: a report from the American  Heart Association. Circulation, 2014. 129(3): p. e28‐e292. 

3.  Bum, E.N., et al., Anticonvulsant properties of the methanolic extract of Cyperus articulatus  (Cyperaceae). J Ethnopharmacol, 2001. 76(2): p. 145‐50. 

4.  Franklin, S.S., Cardiovascular risks related to increased diastolic, systolic and pulse pressure. An  epidemiologist's point of view. Pathol Biol (Paris), 1999. 47(6): p. 594‐603. 

5.  Franklin, S.S., et al., Predominance of isolated systolic hypertension among middle‐aged and  elderly US hypertensives: analysis based on National Health and Nutrition Examination Survey  (NHANES) III. Hypertension, 2001. 37(3): p. 869‐74. 

6.  Chobanian, A.V., et al., Seventh report of the Joint National Committee on Prevention, Detection,  Evaluation, and Treatment of High Blood Pressure. Hypertension, 2003. 42(6): p. 1206‐52. 

7.  Hsu, C.Y., et al., Elevated blood pressure and risk of end‐stage renal disease in subjects without  baseline kidney disease. Arch Intern Med, 2005. 165(8): p. 923‐8. 

8.  Levy, D., et al., The progression from hypertension to congestive heart failure. JAMA, 1996.  275(20): p. 1557‐62. 

9.  Vasan, R.S., et al., Impact of high‐normal blood pressure on the risk of cardiovascular disease. N  Engl J Med, 2001. 345(18): p. 1291‐7. 

10.  Organization, W.H., World Health Statistics. 2015, World Health Organization: Luxembourg. 

11.  Wright, J.T., Jr., et al., A Randomized Trial of Intensive versus Standard Blood‐Pressure Control. N  Engl J Med, 2015. 373(22): p. 2103‐16. 

12.  Wang, Y.R., G.C. Alexander, and R.S. Stafford, Outpatient hypertension treatment, treatment  intensification, and control in Western Europe and the United States. Arch Intern Med, 2007.  167(2): p. 141‐7. 

13.  Cutler, J.A., et al., Trends in hypertension prevalence, awareness, treatment, and control rates in  United States adults between 1988‐1994 and 1999‐2004. Hypertension, 2008. 52(5): p. 818‐27. 

14.  Furchgott, R.F. and J.V. Zawadzki, The obligatory role of endothelial cells in the relaxation of  arterial smooth muscle by acetycholine. Nature, 1980. 288(5789): p. 373‐376.  **The original discovery of an endothelium derived relaxing factor that led to Nobel Prize 

15.  Ignarro, L.J., et al., Endothelium‐derived relaxing factor produced and released from artery and  vein is nitric oxide. Proc. Natl. Acad Sci. USA, 1987. 84: p. 9265‐9269.  * The identification of EDRF as nitric oxide which led to Nobel Prize for Dr. Ignarro 

16.  Palmer, R.M.J., A.G. Ferrige, and S. Moncada, Nitric oxide release accounts for the biological  activity of endothelium‐derived relaxing factor. Nature, 1987. 327(6122): p. 524‐526.  * First demonstration that EDRF is nitric oxide 

 17.  Antonakoudis, G., et al., Blood pressure control and cardiovascular risk reduction. Hippokratia,  2007. 11(3): p. 114‐9. 

18.  Lieberman, E.H., et al., Flow‐induced vasodilation of the human brachial artery is impaired in  patients <40 years of age with coronary artery disease. Am J Cardiol, 1996. 78(11): p. 1210‐4. 

19.  Ludmer, P.L., et al., Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic  coronary arteries. N Engl J Med, 1986. 315(17): p. 1046‐51. 

20.  Napoli, C. and L.J. Ignarro, Nitric oxide and pathogenic mechanisms involved in the development  of vascular diseases. Arch Pharm Res, 2009. 32(8): p. 1103‐8. 

21.  Creager, M.A., et al., Impaired vasodilation of forearm resistance vessels in hypercholesterolemic  humans. J Clin Invest, 1990. 86(1): p. 228‐34. 

22.  Celermajer, D.S., et al., Cigarette smoking is associated with dose‐related and potentially  reversible impairment of endothelium‐dependent dilation in healthy young adults. Circulation,  1993. 88(5 Pt 1): p. 2149‐55. 

23.  Forstermann, U., Nitric oxide and oxidative stress in vascular disease. Pflugers Arch, 2010.  459(6): p. 923‐39. 

24.  Robles Alonso, V. and F. Guarner, Linking the gut microbiota to human health. Br J Nutr, 2013.  109 Suppl 2: p. S21‐6. 

25.  Lundberg, J.O., E. Weitzberg, and M.T. Gladwin, The nitrate‐nitrite‐nitric oxide pathway in  physiology and therapeutics. Nat Rev Drug Discov, 2008. 7(8): p. 156‐167. 

26.  Lundberg, J.O., et al., Nitrate, bacteria and human health. Nat Rev Microbiol, 2004. 2(7): p. 593‐ 602. 

27.  Nunez De Gonzalez, M.T., et al., Survey of residual nitrite and nitrate in conventional and  organic/natural/uncured/indirectly cured meats available at retail in the United States. J Agric  Food Chem, 2012. 60(15): p. 3981‐90. 

28.  Nunez de Gonzalez, M.T., et al., A survey of nitrate and nitrite concentrations in conventional  and organic‐labeled raw vegetables at retail. J Food Sci, 2015. 80(5): p. C942‐9. 

29.  Kelm, M., Nitric oxide metabolism and breakdown. Biochimica et Biophysica Acta, 1999. 1411: p.  273‐289. 

30.  Bryan, N.S., et al., Nitrite is a signaling molecule and regulator of gene expression in mammalian  tissues. Nat Chem Biol, 2005. 1(5): p. 290‐7.  * Report showing evidence that nitrite acts as a signling molecule independent of its reduction to  nitric oxide

31.  Zweier, J.L., et al., Enzyme‐independent formation of nitric oxide in biological tissues. Nat Med,  1995. 1(8): p. 804‐809. 

32.  Lundberg, J.O., et al., Intragastric nitric oxide production in humans: measurements in expelled  air. Gut, 1994. 35(11): p. 1543‐6. 

33.  Benjamin, N., et al., Stomach NO synthesis. Nature, 1994. 368(6471): p. 502.  34.  Bryan, N.S. and J.L. Ivy, Inorganic nitrite and nitrate: evidence to support consideration as dietary  nutrients. Nutr Res, 2015. 35(8): p. 643‐54.  * Comprehensive human evidence presented for establishment of dietary guidelines for nitrite and  nitrate 

35.  Bryan, N.S. and J. Loscalzo, eds. Nitrite and Nitrate in Human Health and Disease. Nutrition and  Health, ed. A. Bendich. 2011, Humana Press: New York.  * First edited book on the therapeutic and safety profile of nitrite and nitrate 

36.  Duncan, C., et al., Chemical generation of nitric oxide in the mouth from the enterosalivary  circulation of dietary nitrate. Nat Med, 1995. 1(6): p. 546‐51.  ** First demonstration that inorganic nitrate could be metabolized to nitrite and nitric oxide by oral  nitrate reducing bacteria. 

37.  Lundberg, J.O. and M. Govoni, Inorganic nitrate is a possible source for systemic generation of  nitric oxide. Free Radic Biol Med, 2004. 37(3): p. 395‐400. 

38.  Spiegelhalder, B., G. Eisenbrand, and R. Preussmann, Influence of dietary nitrate on nitrite  content of human saliva: possible relevance to in vivo formation of N‐nitroso compounds. Food  Cosmet Toxicol, 1976. 14(6): p. 545‐8. 

39.  Hunault, C.C., et al., Bioavailability of sodium nitrite from an aqueous solution in healthy adults. Toxicol Lett, 2009. 190(1): p. 48‐53. 

40.  Duncan, C., et al., Chemical generation of nitric oxide in the mouth from the enterosalivary  circulation of dietary nitrate. Nature Medicine, 1995. 1(6): p. 546‐551. 

41.  Lundberg, J., et al., Nitrate, bacteria, and human health. Nature Reviews Microbiology, 2004. 2:  p. 593‐602. 

42.  Doel, J., et al., Evaluation of bacterial nitrate reduction in the human oral cavity. European  Journal of Oral Sciences, 2005. 113: p. 14‐19. 

43.  Hyde, E.R., et al., Metagenomic analysis of nitrate‐reducing bacteria in the oral cavity:  implications for nitric oxide homeostasis. PLoS One, 2014. 9(3): p. e88645. 

44.  Bryan, N.S., et al., Dietary nitrite supplementation protects against myocardial ischemia‐ reperfusion injury. Proc Natl Acad Sci U S A, 2007. 104(48): p. 19144‐9.   * Study showing dietary nitrite and nitrate could protect the heart from injury from heart attack

45.  Bryan, N.S., et al., Dietary nitrite restores NO homeostasis and is cardioprotective in endothelial  nitric oxide synthase‐deficient mice. Free Radic Biol Med, 2008. 45(4): p. 468‐74. 

46.  Webb, A.J., et al., Acute blood pressure lowering, vasoprotective, and antiplatelet properties of  dietary nitrate via bioconversion to nitrite. Hypertension, 2008. 51(3): p. 784‐90. 

47.  Carlstrom, M., et al., Dietary inorganic nitrate reverses features of metabolic syndrome in  endothelial nitric oxide synthase‐deficient mice. PNAS, 2010. 107(41): p. 17716‐17720. 

48.  Carlstrom, M., et al., Dietary nitrate attenuates oxidative stress, prevents cardiac and renal  injuries, and reduces blood pressure in salt‐induced hypertension. Cardiovascular Research,  2011. 89(3): p. 574‐85. 

49.  Kleinbongard, P., et al., Plasma nitrite reflects constitutive nitric oxide synthase activity in  mammals. Free Radical Biology & Medicine, 2003. 35(7): p. 790‐796.  50.  Bryan, N.S., Nitrite in nitric oxide biology: Cause or consequence? A systems‐based review. Free  Radic Biol Med, 2006. 41(5): p. 691‐701. 

51.  Angelo, M., D.J. Singel, and J.S. Stamler, An S‐nitrosothiol (SNO) synthase function of hemoglobin  that utilizes nitrite as a substrate. Proc Natl Acad Sci U S A, 2006. 103(22): p. 8366‐71. 

52.  Furchgott, R.F. and S. Bhadrakom, Reactions of strips of rabbit aorta to epinephrine,  isopropylarterenol, sodium nitrite and other drugs. J Pharmacol Exp Ther, 1953. 108(2): p. 129‐ 43. 

53.  Cosby, K., et al., Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human  circulation. Nature Medicine, 2003. 9: p. 1498‐1505. 

54.  Tannenbaum, S.R., et al., Nitrite in human saliva. Its possible relationship to nitrosamine  formation. J Natl Cancer Inst, 1974. 53(1): p. 79‐84. 

55.  van Maanen, J.M., A.A. van Geel, and J.C. Kleinjans, Modulation of nitrate‐nitrite conversion in  the oral cavity. Cancer Detect Prev, 1996. 20(6): p. 590‐6. 

56.  Walters, C.L., R.J. Casselden, and A.M. Taylor, Nitrite metabolism by skeletal muscle  mitochondria in relation to haem pigments. Biochim Biophys Acta, 1967. 143(2): p. 310‐8. 

57.  Kozlov, A.V., K. Staniek, and H. Nohl, Nitrite reductase activity is a novel function of mammalian  mitochondria. FEBS Lett, 1999. 454(1‐2): p. 127‐30. 

58.  Zweier, J.L., et al., Enzyme‐independent formation of nitric oxide in biological tissues. Nat Med,  1995. 1(8): p. 804‐9. 

59.  Cosby, K., et al., Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human  circulation. Nat Med, 2003. 9(12): p. 1498‐505. 

60.  Li, H., et al., Characterization of the effects of oxygen on xanthine oxidase‐mediated nitric oxide  formation. J Biol Chem, 2004. 279(17): p. 16939‐46. 

61.  Webb, A., et al., Reduction of nitrite to nitric oxide during ischemia protects against myocardial  ischemia‐reperfusion damage. Proc Natl Acad Sci U S A, 2004. 101(37): p. 13683‐8. 

62.  Bryan, N.S., et al., Cellular Targets and Mechanisms of Nitros(yl)ation:  An Insight into Their  Nature and Kinetics in vivo. Proc. Natl. Acad Sci. USA, 2004. 101(12): p. 4308‐4313. 

63.  Duranski, M.R., et al., Cytoprotective effects of nitrite during in vivo ischemia‐reperfusion of the  heart and liver. J Clin Invest, 2005. 115(5): p. 1232‐40. 

64.  Pluta, R.M., et al., Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of  subarachnoid hemorrhage. Jama, 2005. 293(12): p. 1477‐84. 

65.  Hunter, C.J., et al., Inhaled nebulized nitrite is a hypoxia‐sensitive NO‐dependent selective  pulmonary vasodilator. Nat Med, 2004. 10: p. 1122‐1127. 

66.  Hardwick, J.B., et al., A novel method for the delivery of nitric oxide therapy to the skin of human  subjects using a semi‐permeable membrane. Clin Sci (Lond), 2001. 100(4): p. 395‐400. 

67.  Bjorne, H.H., et al., Nitrite in saliva increases gastric mucosal blood flow and mucus thickness. J  Clin Invest, 2004. 113(1): p. 106‐114. 

68.  Tsuchiya, K., et al., Nitrite is an alternative source of NO in vivo. Am J Physiol Heart Circ Physiol,  2005. 288(5): p. H2163‐70. 

69.  Kleinbongard, P., et al., Plasma nitrite concentrations reflect the degree of endothelial dysfunction in humans. Free Radic Biol Med, 2006. 40(2): p. 295‐302. 

70.  Petersson, J., et al., Gastroprotective and blood pressure lowering effects of dietary nitrate are  abolished by an antiseptic mouthwash. Free Radic Biol Med, 2009. 46(8): p. 1068‐75. 

71.  Webb, A., et al., Reduction of nitrite to nitric oxide during ischemia protects against myocardial  ischemia‐reperfusion damage. Proc Natl Acad Sci USA, 2004. 101(13683‐13688). 

72.  Hendgen‐Cotta, U.B., et al., Dietary nitrate supplementation improves revascularization in  chronic ischemia. Circulation, 2012. 126(16): p. 1983‐92. 

73.  Woessner, M., et al., A stepwise reduction in plasma and salivary nitrite with increasing  strengths of mouthwash following a dietary nitrate load. Nitric Oxide, 2016. 54: p. 1‐7. 

74.  Larsen, F.J., et al., Effects of dietary nitrate on blood pressure in healthy volunteers. N Engl J  Med, 2006. 355(26): p. 2792‐3. 

75.  Kapil, V., et al., Physiological role for nitrate‐reducing oral bacteria in blood pressure control. Free Radic Biol Med, 2013. 55: p. 93‐100.   ** Study demonstrating that oral nitrate reducing bacteria can affect systemic blood pressure

76.  McDonagh, S.T., et al., The Effects of Chronic Nitrate Supplementation and the Use of Strong and  Weak Antibacterial Agents on Plasma Nitrite Concentration and Exercise Blood Pressure. Int J  Sports Med, 2015. 36(14): p. 1177‐85. 

77.  Pinheiro, L.C., et al., Oral nitrite circumvents antiseptic mouthwash‐induced disruption of  enterosalivary circuit of nitrate and promotes nitrosation and blood pressure lowering effect. Free Radic Biol Med, 2016. 101: p. 226‐235. 

78.  Joshipura, K., C. Ritchie, and C. Douglass, Strength of evidence linking oral conditions and  systemic disease. Compend Contin Educ Dent Suppl, 2000(30): p. 12‐23; quiz 65. 

79.  Torregrossa, A.C., M. Aranke, and N.S. Bryan, Nitric oxide and geriatrics:  Implications in  diagnostics and treatment of the elderly. Journal of Geriatric Cardiology, 2011. 8: p. 230‐242. 

80.  Bryan, N.S., K. Bian, and F. Murad, Discovery of the nitric oxide signaling pathway and targets for drug development. Front Biosci, 2009. 14: p. 1‐18. 

How Serious Is My Spouse's Snoring?

Posted by Julian Center | Filed under ,

Well that’s a good question! Of course the constant annoyance is enough to keep you from sleeping and that alone can contribute to a wide range of health issues in addition to feeling tired and sluggish throughout the day. Also, it may affect your job performance, your ability to complete your daily tasks or even to stay awake while driving. Last year alone there were over 50,000 accidents attributed to falling asleep at the wheel. I believe this is a gross underestimate as many accidents that are declared due to alcohol were actually drivers falling asleep, but of course the alcohol didn’t help.

So what’s the serious issue for my spouse? Well, all the same issues you may be dealing with since you didn’t sleep. By the way, some trivia – did you know 35% of married couples sleep in separate bedrooms because of snoring?

The snoring may in fact be related to Obstructive Sleep Apnea (OSA) – the most chronic debilitating disease now afflicting Americans. Why? Because of the comorbidities (a big word for associated diseases) which include:

  • Sudden heart attack

  • Stroke

  • Diabetes

  • Hypertension

  • Early dementia

  • Depression

  • Impotence

  • Obesity

Is that enough to get your attention?

If you or someone you know is a snorer do not hesitate to call the Julian Center for more answers.

Alcohol-containing Mouthwashes Linked to Cancer

Posted by Julian Center | Filed under

 Is there a possibility that mouthwashes with alcohol (i.e. Listerine) could be linked to cancer? First, we do know alcohol is a carcinogen so why is it being used in mouthwash? Also, it can be abused by adolescents due to the alcohol content. 

Studies done with alcohol containing mouthrinses seem to support it’s efficacy for reducing gum disease. But are these studies flawed to favor the manufacturers of such products and is the benefit really worth the possible increased risk for cancer? Especially since there are many mouthrinses without alcohol or fluoride, which may be another carcinogen. 

Interestingly enough, some mouthrinses can contain as much as 26% alcohol. Wow, that’s more than a glass of beer or wine! 

Of course the makers of Listerine (Johnson & Johnson) as well as the ADA (American Dental Association) deny any association to oral cancer. 

But a study by Professor Michael McCollough published a study that disagrees. His research included 3,210 people and concluded there is a “significant risk factor”. They also found the affect was a nine-fold increase in risk to smokers and five times the risk for those who drank alcohol. 

An additional study completed by the University of Sao Paulo in Brazil reviewed case studies of 309 patients suffering from cancer of the mouth and pharynx. They found a clear association between the daily use of alcohol containing mouthwashes and cancers of the pharynx and mouth. 

Other studies reviewed the use of low pH (acidic) mouthwashes like Listerine and Scope and found they caused erosion of dental enamel and increased sensitivity of teeth. 

After these studies were debunked by Johnson & Johnson they introduced an alcohol-free mouthwash (Listerine Zero). 

For your information, there are 35-40,000 cases of mouth and throat cancer every year. Therefore it is important to have a regular oral cancer screen by your dental professional.

And by the way, there are many effective non-alcohol mouthrinses – just ask about your options at your next visit to the JulianCenter.